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SECTION I 

INTRODUCTION 

The experimental program to determine the bound-bound emissivity in the 

near infrared (1-10  /im) of a low density, decaying, nonthermal nitrogen and/or 

oxygen plasma got underway at Naval Research Laboratory in mid-January 1973. 

Our approach to the problem was to modify an existing 0-pinch device to produce 

a slowly decaying plasma (on the order of 0.1 msec).   Using the plasma as a 

light source, we can measure the absolute intensity of visible radiation origina- 

ting via dipole transitions from upper levels of interest.   This information in 

conjunction with the known atomic transition probabilities directly yields the 

number densities of ^hese upper levels.   From this we can then calculate the 

irarared bound-bouna emissivity due to dipole transitions from these upper levels 

to the appropriate lower levels. 

It should be pointed cut that in order to make these measurements meaning- 

ful the plasma parameters; i.e., electron density, temperature, and effective 

length, must be known.   Thus, a major part of our effort must be directed 

toward plasma diagnostics. 
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SECTION II 

APPARATUS MODIFICATIONS 

The original ö-pinch device gave plasma parameters unsuitable for this 

study, electron density ~ 1017 cm~\ electron temperature ~ 100 eV, and plasma 

lifetime on the order of microseconds.   We modified this apparatus by adding 

large inductors and crowbar switches to the main bank.   The main bank, instead 

of heating the plasma, now acts as a containment bias field.   A hybrid schematic 

of the electrical circuitry is shown in Figure 1. 

The mode of operation is as follows: 

1. A 0.12 jxF capacitor charged to ~ 16 kV is discharged through small 

side coils. This fast ringing discharge, called the pre-preheater, is designed to 

partially ionize and heat the gas in the tube. 

2. About 5 Msec later a 2 ^F capacitor charged to ~ 16 kV is discharged 

through the main ö-pinch coil. This is called the preheater. It heats the plasma 

still further, to about 3 eV, and nearly totally ionizes it. 

3. Six microseconds later the main bank, charged to ~ 17 kV and having 

a total capacity of 250 ^F, is discharged through the main ö-pinch coil ana the 

large inductor.   This produces a large bias field ( ~ 9 kG) inside the coil which 

tends to hold the plasma away from the tube walls.   This is important because 

the plasma by being confined to the center of the tube during its initial hot stage 

will not become contaminated with ablated wall material.   Later, as the plasr i 

cools, it no longer is capable of ablating the quartz wall« of the tube, and thus 

containment is not :ritical. 

4. When the current reaches its peak, about 16. 5 ßsec after the dis- 

charge of the main bank is initiated, crowbar switches are triggered.   These 

essentially short out the main bank capacitors.   Thus, the current will continue 

to flow through the circuit fed by inductive energy storage and exponentially 

damped by ohmic losses until the switches stop conducting.   A current trace 

is shown in Figure 2, and as can be seen this happens about 240 /isec after 

initiation of a main bank discharge. 
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Figure 1.   Hybrid schematic of ö-pinch electrical circuit. 
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A further modification to the ö-pinch device was to put a longer coil on it. 

Since our optical measurements are to be done axially, the longest possible 

plasma length will enable us to detect optical radiation from the lowest possible 

density. 

CROWBAR SWITCH 
FIRES 

50 /isec 
PREHEATER 

PRE-PREHEATER 

Figure 2. Current flowing in e-pinch main coil 
alter addition of inductors and crow- 
bar switches to main bank. 



SECTION m 

MEASUREMENTS (TO DATE) 

Once satisfactory current characteristics were obtained in the (/-pinch device, 

diagnostic measurements were undertaken.   Because of the ease in working with 

nitrogen, we felt all our diagnostics should first be tried with nitrogen.   Thus, 

to date, we have results with a pure nitrogen fill gas at 10 ^ of mercury pressure. 

We first took a ti i a integrated spectrum of the light being emitted by our 

plasma with the optical detection setup shown in Figure 3.   Upon identifying the 

lines of the time integrated emission spectrum shown in Figure 4, we found that 

the plasma was relatively impurity free emitting mainly atomic nitrogen, ionized 

atomic nitrogen, molecular nitrogen, and ionized molecular nitrogen lines 
(N, N+, N2, <). 

Our next task was to measure the time variation of the various emitting 

species in our plasma.   Some oscilliscope traces are shown in Figure 5.   Notice 

how the neutral nitrogen line at 4935 A decays slowly with time while the traces 

of the ionized atomic nitrogen line at 4895. T A quickly decays.   It is important 

to note here that the emission from the molecular nitrogen ion bandhead at 3914 

A rapidly decays at first but then levels off for about 40 ß se ■ before decaying 

further.   This foot in the light emission versus time may indicate a competition 

between production and destruction processes. 

As a test of our experimental method, we decided to take measurements at 

early times when the electron density and temperature are high enough to insure 

that some detectable neutral atom levels will be in collisional (Saha) equilibrium 

with the ground state of the ion.   Laser scattering was done by directing the 

beam of a pulsed ruby laser down the axis of our tube and detecting scattered 

light perpendicular to this beam through a slot in the ö-pinch coil.   The resulting 

Doppler-broadened profiles were scanned shot-to-shot with a monochromator. 

Calibration of the system to get the absolute value of Thomson-scattered light 

was done using Rayleigh scattering from molecular nitrogen at known pressure. 
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Figure 5.   Time resolved emission by the various 
species present in the pure gaseous 
nitrogen discharge. 
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The data were fitted via least squares to a Gaussian.   The electron density and 

temperature obtained in this way are plotted versus time from main bank dis- 
charge initiation in Figure 6. 

Next, we picked three visible atomic nitrogen lines with known atomic tran- 

sition probabilities.   Using the tungsten lamp shown schematically in Figure 3 

as a standard source, we then measured the absolute intensity of these three 

lines versus time.   These lines are 4110 k, 4935 I, and 7468 k and the upper 

level« from which these lines originate have ionization energies of 0. 83, 1. 34 

and 3. 54 eV, respectively.   We picked these three upper levels because under 

our conditions the two with lower ionization energies should be in collisional 
(Saha) equilibrium with the ground state of the ion. 

Assuming the plasma length (L) to be equal to the length of the e-pinch coil 

(80 cm) one can easily calculate the number densities (Nu) of the three upper 

levels involved using known atomic transition probabilities, 

N   =1 
u     exp /feAlu  L) (1) 

where,   Alu ~ atomic transition probability 

L     ~ length of plasma 

co     ~ angular frequency of light emitted 

^xp ~  measured absolute line intensity 

Nu   ~ number densitv of upper level 

The number densities of these three energy levels divided by the level 

degeneracy (g-factor) are plotted versus level ionization energy for various times 
after main bank discharge initiation in Figure 7. 

Using the electron density and temperature obtained previously from laser 
scattering Figure 6 and the Saha equation, 

_H. = i / mkT \ exp   (E /kT) 
gu 2g;   l^v 

(2) 
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Figure 6.   Electron density and electron temperature plotted versus 
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, where,   N '     u 

*u 

Ne 

NN; 

+ 

m 

k 

T 

fi 

E u 

~ upper state number density 

~ upptir state degenerac y 

~ electron density 

~ atomic nitrogen ion grounJ state number density 

~ atomic nitrogen ion ground state degeneracy 

~ electron mass 

~ Boltzmann's constant 

~ electron temperature 

~ Planck's constant divided by 2 7r 

^ upper state ionization energy 

we c&a calculate what one would expect if local thermodynamic equilibrium pre- 

vailed.   To do this we have assumed that the atomic nitrogen ion ground state 

number density equals the electron density.   These results for the relevant times 

are also shown in Figure 7. 

As can be seen, the experimentally obtained number densities do not agree 

with those calculated from the Sahaequation using N   = N +.   It should be noted, 

however, that the slope of the line connecting data from the two states with the 

lower ionization potential; i. e., those states expected to be in collisional (Saha) 

equilibrium with the free electron gas, is essentially the same as the slope of 

the line obtained from Saha's equation.   This indicates that the temperature 

obtained from laser scattering is consistent with the absolute line intensity 

measurements, since the slope in both cases is proportional to l/T.   It should 

also be noted that the discrepancy increases with time.   One possible reason 

for this discrepancy is that our assumption N   = N^ is incorrect and that in 

actuality we should have used N, = NN+ 
+
NN+) wheri NN+ is the number density 

of molecular nitrogen ions, as our statement of quasi-neutrality.   Using this 

statement of quasi-neutrality we have calculated the number density of molecular 

nitrogen ions necessary to obtain agreement between our experimental results 

14 
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and those obtained from Eteha'a equation.   This number density along with the 

number density of atomic nitrogen ions and the electron density is shown graph- 
ically in Figure B. 

At present, we are conducting a laser scattering experiment off the end of 

the ö-pinch coil.   This is to determine whether or not the use of the coil length 

as the plasma length in equation (1) is justified.   A knowledge of the homogeneity 

oi our plasma will also help us later when we do microwave interferometry to 

obtain the electron density, since this diagnostic method yields the integral of 
electron density over the entire plasma length. 
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SECTION IV 

CONCLUSIONS 

Since this project began in mid-January 1973, we have successfully modified 

our plasma device, the 50 kj o-pinch, to give a slowly decaying nonthermal 

plasma as well as a measurement of a few level populations in nitrogen.   These 

measurements show a marked discrepancy with what we expected and gives evi- 

dence that there may be some means of efficiently producing molecular ions. 
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SECTION V 

FUTURE WORK 

The following program is proposed for FY 74: 

A. 1st Quarter. 

1. Complete the study to measure the axial homogeneity of our plasma. 

This should take only a few more weeks of data taking.   As pointed 

out above, this will be ci great help later when a microwave inter- 

ferometer will be i sed. 

2. Test our explanation for the discrepancy between our experimental 

number densities and those calculated from the Saha equation.   This 

we can do by placing a flashlamp behind the plabma and looking in 

absorption for the molecular ion bandhead at 3914.4 A. 

B. 2d Quarter. 

We will set up the 8 mm microwave interferometer to determine the 
13 — 3 

electron density at later times, Ne ^ 10    cm    . 

C. 3d Quarter. 

The electron temperature will be measured at later times by using a 

Langmuir probe.   During this period we also plan on measuring level 

number densities of atomic nitrogen at later limes.    This should com- 

plete the nitrogen part of the experiment. 

D. 4th Quarter. 

During this quarter we will begin the oxygen studies by doing laser 

scattering at early times.   We plan on completing the oxygen studies 

during the first two quarters of FY 75.   This will be followed in the 

socond half of the year by measurements in various oxygen-nitrogen 

gas mixiares.   The possibility of quenching collisions and other 

phenomenon occurring should make this study most interesting as well 

as informative. 

18 


